Жизнь огородника
Назад

Закон кулона формула и формулировка

Опубликовано: 19.04.2020
Время на чтение: 16 мин
0
0

Коэффициент k

В СГСЭединица измерения заряда выбрана таким образом, что коэффициент k равен единице.

где  ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.

https://www.youtube.com/watch?v=ytadvertise

В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

В СГСЭ

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В СГСЭ

Закон Кулона с точки зрения квантовой электродинамики

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.[2]

Здесь m — масса электрона, е — его заряд,  — абсолютная величина радиус-вектора j-го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов.

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности.

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

Здесь m — масса электрона, е — его заряд,  — абсолютная величина радиус-вектора j-го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов.

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности.

Значение закона Кулона в истории науки

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщениео том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г.

Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния». Шотландский физик Джон Робисон утверждал (1822), что в 1769 г.

https://www.youtube.com/watch?v=playlist

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Предлагаем ознакомиться  Больничный лист при ЭКО беременности

Вперед

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил[6] Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил[7], что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение[8] о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г.

Пристли в своей «Истории электричества»[9] отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния». Шотландский физик Джон Робисон утверждал (1822), что в 1769 г.

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[11]

Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме[26].

Принцип суперпозиции

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и . То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

На рисунке 1.1.4 на примере электростатического взаимодействия трёх заряженных тел поясняется принцип суперпозиции.

https://www.youtube.com/watch?v=ytpress

Рисунок 1.1.4. Принцип суперпозиции электростатических силF→=F21→ F31→; F2→=F12→ F32→; F3→=F13→ F23→.

Рисунок 1.1.5. Модель взаимодействия точечных зарядов.

Несмотря на то, что принцип суперпозиции является фундаментальным законом природы, его использование требует некоторой осторожности, когда он применяется по отношению к взаимодействию заряженных тел конечных размеров. Примером таковых могут послужить два проводящих заряженных шара 1 и 2. Если к подобной системе, состоящей из двух обладающих зарядом шаров поднести еще один заряженный шар, то взаимодействие между 1 и 2 претерпит изменения по причине перераспределения зарядов.

Принцип суперпозиции предполагает, что силы электростатического взаимодействия между двумя любыми телами не зависят от наличия других обладающих зарядом тел, при условии, что распределение зарядов фиксировано (задано).

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и . То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей[12].

Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Предлагаем ознакомиться  Закон про межевание

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

где  — комптоновская длина волны электрона,  — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где  — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов.

— т. н. постоянная тонкой структуры ≈7.3·10−3;

Закон кулона формула и формулировка

 — т. н. классический радиус электрона ≈2.8·10−13 см.

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника[13].

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до [14].

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[15][16].

https://www.youtube.com/watch?v=ytabout

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6[16].

Примечания

  1. Ландау Л. Д., Лифшиц Е. М.Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 2 Теория поля. — 8-е изд., стереот. — М.: ФИЗМАТЛИТ, 2001. — 536 с. — ISBN 5-9221-0056-4 (Т. 2), Гл. 5 Постоянное электромагнитное поле, п. 38 Поле равномерно движущегося заряда, с 132
  2. Ландау Л. Д., Лифшиц Е. М.Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория). — 5-е изд., стереот. — М.: Физматлит, 2002. — 808 с. — ISBN 5-9221-0057-2 (Т. 3), гл. 3 Уравнение Шредингера, п. 17 Уравнение Шредингера, с. 74
  3. Г. Бете Квантовая механика. — пер. с англ., под ред. В. Л. Бонч-Бруевича, «Мир», М., 1965, Часть 1 Теория строения атома, Гл. 1 Уравнение Шредингера и приближённые методы его решения, с. 11
  4. Р. Е. Пайерлс Законы природы. пер. с англ. под ред. проф. И. М. Халатникова, Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
  5. Л. Б. Окуньalpha beta gamma … z Элементарное введение в физику элементарных частиц, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
  6. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
  7. Эпинус Ф. Т. У.Теория электричества и магнетизма. — Л.: АН СССР, 1951. — 564 с. — (Классики науки). — 3000 экз.
  8. Abel Socin (1760) Acta Helvetiсa, vol. 4, pages 224-225.
  9. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
  10. John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 автор пишет, что сила изменяется как x−2,06.
  11. С. Р. Филонович «Кавендиш, Кулон и электростатика», М., «Знание», 1988, ББК 22.33 Ф53, гл. «Судьба закона», с. 48
  12. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
  13. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
  14. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
  15. W. E. Lamb, R. C. Retherford Fine Structure of the Hydrogen Atom by a Microwave Method (Английский) // Physical Review. — Т. 72. — № 3. — С. 241-243.
  16. 12Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
  17. CODATA (the Committee on Data for Science and Technology)
  18. Берестецкий, В. Б., Лифшиц, Е. М., Питаевский, Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565-567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3
  19. Neda Sadooghi Modified Coulomb potential of QED in a strong magnetic field (Английский).
  20. Окунь Л. Б. «Физика элементарных частиц», изд. 3-е, М., «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
  21. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
  22. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
  23. Uehling E.A ., Phys. Rev., 48, 55, (1935)
  24. «Мезоны и поля» С. Швебер, Г. Бете, Ф. Гофман том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
  25. А. Б. Мигдал «Поляризация вакуума в сильных полях и пионная конденсация», «Успехи физических наук», т. 123, в. 3, 1977 г., ноябрь, с. 369—403;
  26. Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52-53;

Литература

  1. Филонович С. Р. Судьба классического закона. — М., Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.
, , ,
Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector